Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
3.
PLoS Pathog ; 18(10): e1010905, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36240255

RESUMO

Viral interference is a process where infection with one virus prevents a subsequent infection with the same or a different virus. This is believed to limit superinfection, promote viral genome stability, and protect the host from overwhelming infection. Mechanisms of viral interference have been extensively studied in plants, but remain poorly understood in vertebrates. We demonstrate that infection with infectious salmon anaemia virus (ISAV) strongly reduces homologous viral attachment to the Atlantic salmon, Salmo salar L. vascular surface. A generalised loss of ISAV binding was observed after infection with both high-virulent and low-virulent ISAV isolates, but with different kinetics. The loss of ISAV binding was accompanied by an increased susceptibility to sialidase, suggesting a loss of the vascular 4-O-sialyl-acetylation that mediates ISAV attachment and simultaneously protects the sialic acid from cleavage. Moreover, the ISAV binding capacity of cultured cells dramatically declined 3 days after ISAV infection, accompanied by reduced cellular permissiveness to infection with a second antigenically distinct isolate. In contrast, neither infection with infectious haematopoietic necrosis virus nor stimulation with the viral mimetic poly I:C restricted subsequent cellular ISAV attachment, revealing an ISAV-specific mechanism rather than a general cellular antiviral response. Our study demonstrates homologous ISAV attachment interference by de-acetylation of sialic acids on the vascular surface. This is the first time the kinetics of viral receptor destruction have been mapped throughout the full course of an infection, and the first report of homologous attachment interference by the loss of a vascular viral receptor. Little is known about the biological functions of vascular O-sialyl-acetylation. Our findings raise the question of whether this vascular surface modulation could be linked to the breakdown of central vascular functions that characterises infectious salmon anaemia.


Assuntos
Anemia , Doenças dos Peixes , Isavirus , Infecções por Orthomyxoviridae , Salmo salar , Animais , Isavirus/genética , Receptores Virais
4.
BMC Vet Res ; 18(1): 306, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948980

RESUMO

Piscine orthoreovirus genotype-1 (PRV-1) is a virus commonly associated with Atlantic salmon aquaculture with global variability in prevalence and association with disease. From August 2016 to November 2019, 2,070 fish sampled at 64 Atlantic salmon net-pen farm sites during 302 sampling events from British Columbia, Canada, were screened for PRV-1 using real-time qPCR. Nearly all populations became PRV-1 positive within one year of seawater entry irrespective of location, time of stocking, or producer. Cohorts became infected between 100-300 days at sea in > 90% of repeatedly sampled sites and remained infected until harvest (typically 500-700 days at sea). Heart inflammation, which is sometimes attributed to PRV-1, was also assessed in 779 production mortalities from 47 cohorts with known PRV status. Mild heart inflammation was common in mortalities from both PRV + and PRV- populations (67% and 68% prevalence, respectively). Moderate and severe lymphoplasmacytic heart inflammation was rare (11% and 3% prevalence, respectively); however, mainly arose (66 of 77 occurrences) in populations with PRV-1. Detection of PRV-1 RNA was also accomplished in water and sediment for which methods are described. These data cumulatively identify that PRV-1 ubiquitously infects farmed Atlantic salmon in British Columbia during seawater production but only in rare instances correlates with heart inflammation.


Assuntos
Doenças dos Peixes , Infecções por Reoviridae , Salmo salar , Animais , Arritmias Cardíacas/veterinária , Canadá , Doenças dos Peixes/epidemiologia , Genótipo , Inflamação/veterinária , Orthoreovirus , Infecções por Reoviridae/epidemiologia , Infecções por Reoviridae/veterinária
5.
Pathogens ; 10(12)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34959503

RESUMO

Piscine orthoreovirus (PRV) infects farmed and wild salmon and trout species in North America, South America, Europe, and East Asia. PRV groups into three distinct genotypes (PRV-1, PRV-2, and PRV-3) that can vary in distribution, host specificity, and/or disease potential. Detection of the virus is currently restricted to genotype specific assays such that surveillance programs require the use of three assays to ensure universal detection of PRV. Consequently, herein, we developed, optimized, and validated a real-time reverse transcription quantitative PCR assay (RT-qPCR) that can detect all known PRV genotypes with high sensitivity and specificity. Targeting a conserved region at the 5' terminus of the M2 segment, the pan-PRV assay reliably detected all PRV genotypes with as few as five copies of RNA. The assay exclusively amplifies PRV and does not cross-react with other salmonid viruses or salmonid host genomes and can be performed as either a one- or two-step RT-qPCR. The assay is highly reproducible and robust, showing 100% agreement in test results from an inter-laboratory comparison between two laboratories in two countries. Overall, as the assay provides a single test to achieve highly sensitive pan-specific PRV detection, it is suitable for research, diagnostic, and surveillance purposes.

6.
Viruses ; 13(9)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34578311

RESUMO

The sole member of the Piscihepevirus genus (family Hepeviridae) is cutthroat trout virus (CTV) but recent metatranscriptomic studies have identified numerous fish hepevirus sequences including CTV-2. In the current study, viruses with sequences resembling both CTV and CTV-2 were isolated from salmonids in eastern and western Canada. Phylogenetic analysis of eight full genomes delineated the Canadian CTV isolates into two genotypes (CTV-1 and CTV-2) within the Piscihepevirus genus. Hepevirus genomes typically have three open reading frames but an ORF3 counterpart was not predicted in the Canadian CTV isolates. In vitro replication of a CTV-2 isolate produced cytopathic effects in the CHSE-214 cell line with similar amplification efficiency as CTV. Likewise, the morphology of the CTV-2 isolate resembled CTV, yet viral replication caused dilation of the endoplasmic reticulum lumen which was not previously observed. Controlled laboratory studies exposing sockeye (Oncorhynchus nerka), pink (O. gorbuscha), and chinook salmon (O. tshawytscha) to CTV-2 resulted in persistent infections without disease and mortality. Infected Atlantic salmon (Salmo salar) and chinook salmon served as hosts and potential reservoirs of CTV-2. The data presented herein provides the first in vitro and in vivo characterization of CTV-2 and reveals greater diversity of piscihepeviruses extending the known host range and geographic distribution of CTV viruses.


Assuntos
Doenças dos Peixes/virologia , Hepevirus/classificação , Hepevirus/genética , Hepevirus/isolamento & purificação , Animais , Canadá , Genótipo , Hepevirus/patogenicidade , Infecção Persistente/virologia , Filogenia , Salmo salar/virologia , Salmão/virologia , Truta , Virulência , Vírus não Classificados/classificação , Vírus não Classificados/genética , Vírus não Classificados/isolamento & purificação , Vírus não Classificados/patogenicidade
7.
Animals (Basel) ; 11(8)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34438883

RESUMO

Throughout a 20 year biosurveillance period, viral hemorrhagic septicemia virus was isolated in low titers from only 6/7355 opportunistically sampled adult Pacific herring, reflecting the typical endemic phase of the disease when the virus persists covertly. However, more focused surveillance efforts identified the presence of disease hot spots occurring among juvenile life history stages from certain nearshore habitats. These outbreaks sometimes recurred annually in the same temporal and spatial patterns and were characterized by infection prevalence as high as 96%. Longitudinal sampling indicated that some epizootics were relatively transient, represented by positive samples on a single sampling date, and others were more protracted, with positive samples occurring throughout the first 10 weeks of the juvenile life history phase. These results indicate that viral hemorrhagic septicemia (VHS) epizootics in free-ranging Pacific herring C. pallasii are more common than previously appreciated; however, they are easily overlooked if biosurveillance efforts are not designed around times and locations with high disease potential.

8.
BMC Biol ; 19(1): 138, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34253202

RESUMO

BACKGROUND: Viruses can impose energetic demands on organisms they infect, in part by hosts mounting resistance. Recognizing that oxygen uptake reliably indicates steady-state energy consumption in all vertebrates, we comprehensively evaluated oxygen uptake and select transcriptomic messaging in sockeye salmon challenged with either a virulent rhabdovirus (IHNV) or a low-virulent reovirus (PRV). We tested three hypotheses relating to the energetic costs of viral resistance and tolerance in this vertebrate system: (1) mounting resistance incurs a metabolic cost or limitation, (2) induction of the innate antiviral interferon system compromises homeostasis, and (3) antiviral defenses are weakened by acute stress. RESULTS: IHNV infections either produced mortality within 1-4 weeks or the survivors cleared infections within 1-9 weeks. Transcription of three interferon-stimulated genes (ISGs) was strongly correlated with IHNV load but not respiratory performance. Instead, early IHNV resistance was associated with a mean 19% (95% CI = 7-31%; p = 0.003) reduction in standard metabolic rate. The stress of exhaustive exercise did not increase IHNV transcript loads, but elevated host inflammatory transcriptional signaling up to sevenfold. For PRV, sockeye tolerated high-load systemic PRV blood infections. ISG transcription was transiently induced at peak PRV loads without associated morbidity, microscopic lesions, or major changes in aerobic or anaerobic respiratory performance, but some individuals with high-load blood infections experienced a transient, minor reduction in hemoglobin concentration and increased duration of excess post-exercise oxygen consumption. CONCLUSIONS: Contrary to our first hypothesis, effective resistance against life-threatening rhabdovirus infections or tolerance to high-load reovirus infections incurred minimal metabolic costs to salmon. Even robust systemic activation of the interferon system did not levy an allostatic load sufficient to compromise host homeostasis or respiratory performance, rejecting our second hypothesis that this ancient innate vertebrate antiviral defense is itself energetically expensive. Lastly, an acute stress experienced during testing did not weaken host antiviral defenses sufficiently to promote viral replication; however, a possibility for disease intensification contingent upon underlying inflammation was indicated. These data cumulatively demonstrate that fundamental innate vertebrate defense strategies against potentially life-threatening viral exposure impose limited putative costs on concurrent aerobic or energetic demands of the organism.


Assuntos
Doenças dos Peixes , Animais , Antivirais , Humanos , Vírus da Necrose Hematopoética Infecciosa , Interferons , Oxigênio , Salmão
9.
Pathogens ; 9(10)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053677

RESUMO

Piscine reovirus (PRV) is the causative agent of heart and skeletal muscle inflammation (HSMI), which is detrimental to Atlantic Salmon (AS) aquaculture, but so far has not been cultivatable, which impedes studying the disease and developing a vaccine. Homogenates of head kidney and red blood cells (RBC) from AS in which PRV-1 had been detected were applied to fish cell lines. The cell lines were from embryos, and from brain, blood, fin, gill, gonads, gut, heart, kidney, liver, skin, and spleen, and had the shapes of endothelial, epithelial, fibroblast, and macrophage cells. Most cell lines were derived from the Neopterygii subclass of fish, but one was from subclass Chondrostei. Cultures were examined by phase contrast microscopy for appearance, and by quantitative polymerase chain reaction (qPCR) for PRV-1 RNA amplification and for the capacity to transfer any changes to new cultures. No changes in appearance and Ct values were observed consistently or transferable to new cultures. Therefore, 31 cell lines examined were unable to support PRV-1 amplification and are described as belonging to the non-supportive PRV-1 invitrome. However, these investigations and cell lines can contribute to understanding PRV-1 cellular and host tropism, and the interactions between virus-infected and bystander cells.

10.
J Fish Dis ; 43(11): 1331-1352, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32935367

RESUMO

Piscine orthoreovirus (PRV) is a common and widely distributed virus of salmonids. Since its discovery in 2010, the virus has been detected in wild and farmed stocks from North America, South America, Europe and East Asia in both fresh and salt water environments. Phylogenetic analysis suggests three distinct genogroups of PRV with generally discrete host tropisms and/or regional patterns. PRV-1 is found mainly in Atlantic (Salmo salar), Chinook (Oncorhynchus tshawytscha) and Coho (Oncorhynchus kisutch) Salmon of Europe and the Americas; PRV-2 has only been detected in Coho Salmon of Japan; and PRV-3 has been reported primarily in Rainbow Trout (Oncorhynchus mykiss) in Europe. All three genotypes can establish high-load systemic infections by targeting red blood cells for principal replication. Each genotype has also demonstrated potential to cause circulatory disease. At the same time, high-load PRV infections occur in non-diseased salmon and trout, indicating a complexity for defining PRV's role in disease aetiology. Here, we summarize the current body of knowledge regarding PRV following 10 years of study.


Assuntos
Doenças dos Peixes/virologia , Orthoreovirus/patogenicidade , Infecções por Reoviridae/veterinária , Animais , Aquicultura , Doenças dos Peixes/patologia , Genótipo , Orthoreovirus/classificação , Orthoreovirus/genética , Filogenia , Infecções por Reoviridae/virologia , Salmão , Truta
11.
J Fish Dis ; 43(7): 719-728, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32476167

RESUMO

Piscine orthoreovirus genotype 1 (PRV-1) is the causative agent of heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon (Salmo salar L.). The virus has also been found in Pacific salmonids in western North America, raising concerns about the risk to native salmon and trout. Here, we report the results of laboratory challenges using juvenile Chinook salmon, coho salmon and rainbow trout injected with tissue homogenates from Atlantic salmon testing positive for PRV-1 or with control material. Fish were sampled at intervals to assess viral RNA transcript levels, haematocrit, erythrocytic inclusions and histopathology. While PRV-1 replicated in all species, there was negligible mortality in any group. We observed a few erythrocytic inclusion bodies in fish from the PRV-1-infected groups. At a few time points, haematocrits were significantly lower in the PRV-1-infected groups relative to controls, but in no case was anaemia noted. The most common histopathological finding was mild, focal myocarditis in both the non-infected controls and PRV-1-infected fish. All cardiac lesions were judged mild, and none were consistent with those of HSMI. Together, these results suggest all three species are susceptible to PRV-1 infection, but in no case did infection cause notable disease in these experiments.


Assuntos
Doenças dos Peixes/virologia , Genótipo , Hematócrito/veterinária , Corpos de Inclusão Viral/fisiologia , Oncorhynchus , Orthoreovirus/fisiologia , Infecções por Reoviridae/veterinária , Animais , Oncorhynchus kisutch , Oncorhynchus mykiss , Orthoreovirus/genética , RNA Viral/análise , Infecções por Reoviridae/virologia
12.
Sci Rep ; 10(1): 4731, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32152376

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

13.
J Fish Dis ; 43(1): 49-55, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31709554

RESUMO

The opportunistic examination of factors associated with an outbreak of piscirickettsiosis (SRS) is described in Atlantic salmon Salmo salar post-smolts held in an open netpen or in tanks supplied with raw sea water at a research aquarium in western Canada. During the outbreak, seawater temperature was significantly higher and salinity significantly lower in the netpen compared with the tanks. Mortality in the netpen began approximately 3 weeks prior to that in the tanks, and cumulative mortality in the netpen (34%) was significantly higher than in the tanks (12%). Piscirickettsia salmonis was confirmed by qPCR in tissues from moribund and dead fish and from colonies grown on enriched blood agar medium. Neither P. salmonis nor SRS were observed in salmon held concurrently in UV-irradiated sea water. The elevated mortality was curtailed by treatment with oxytetracycline. These observations further indicate warmer, less saline and periodically hypoxic seawater are risk factors for SRS. UV irradiation of sea water is shown to be a tool for SRS management in fish-holding facilities.


Assuntos
Reservatórios de Doenças , Doenças dos Peixes/epidemiologia , Piscirickettsia/isolamento & purificação , Infecções por Piscirickettsiaceae/veterinária , Salmo salar , Salmão , Animais , Animais de Zoológico , Colúmbia Britânica/epidemiologia , Doenças dos Peixes/parasitologia , Incidência , Infecções por Piscirickettsiaceae/epidemiologia , Infecções por Piscirickettsiaceae/parasitologia , Prevalência
14.
Front Physiol ; 10: 1354, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31719825

RESUMO

[This corrects the article DOI: 10.3389/fphys.2019.00114.].

15.
Fish Shellfish Immunol ; 94: 525-538, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31539572

RESUMO

Aquatic rhabdoviruses are globally significant pathogens associated with disease in both wild and cultured fish. Infectious hematopoietic necrosis virus (IHNV) is a rhabdovirus that causes the internationally regulated disease infectious hematopoietic necrosis (IHN) in most species of salmon. Yet not all naïve salmon exposed to IHNV become diseased, and the mechanisms by which some individuals evade or rapidly clear infection following exposure are poorly understood. Here we used RNA-sequencing to evaluate transcriptomic changes in sockeye salmon, a keystone species in the North Pacific and natural host for IHNV, to evaluate the consequences of IHNV exposure and/or infection on host cell transcriptional pathways. Immersion challenge of sockeye salmon smolts with IHNV resulted in approximately 33% infection prevalence, where both prevalence and viral kidney load peaked at 7 days post challenge (dpc). De novo assembly of kidney transcriptomes at 7 dpc revealed that both infected and exposed but noninfected individuals experienced substantial transcriptomic modification; however, stark variation in gene expression patterns were observed between exposed but noninfected, infected, and unexposed populations. GO and KEGG pathway enrichment in concert with differential expression analysis identified that kidney responses in exposed but noninfected fish emphasised a global pattern of transcriptional down-regulation, particularly for pathways involved in DNA transcription, protein biosynthesis and macromolecule metabolism. In contrast, transcriptomes of infected fish demonstrated a global emphasis of transcriptional up-regulation highlighting pathways involved in antiviral response, inflammation, apoptosis, and RNA processing. Quantitative PCR was subsequently used to highlight differential and time-specific regulation of acute phase, antiviral, inflammatory, cell boundary, and metabolic responsive transcripts in both infected and exposed but noninfected groups. This data demonstrates that waterborne exposure with IHNV has a dramatic effect on the sockeye salmon kidney transcriptome that is discrete between resistant and acutely susceptible individuals. We identify that metabolic, acute phase and cell boundary pathways are transcriptionally affected by IHNV and kidney responses to local infection are highly divergent from those generated as part of a disseminated response. These data suggest that primary resistance of naïve fish to IHNV may involve global responses that encourage reduced cellular signaling rather than promoting classical innate antiviral responses.


Assuntos
Resistência à Doença/imunologia , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Salmão/genética , Salmão/imunologia , Transcriptoma/imunologia , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Vírus da Necrose Hematopoética Infecciosa/fisiologia , Rim/imunologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Carga Viral/fisiologia
16.
Dis Aquat Organ ; 135(3): 201-209, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31486412

RESUMO

Viral hemorrhagic septicemia virus (VHSV) genotype IVa is an endemic pathogen to the marine waters of British Columbia, with numerous marine fishes being susceptible to infection and disease, including Atlantic salmon Salmo salar reared in open net-pen aquaculture. The susceptibility of Atlantic salmon and sockeye salmon Oncorhynchus nerka to VHSV-IVa infection was evaluated using exposure routes including injection, static immersion, and cohabitation with diseased Pacific herring Clupea pallasii. Exposed fish were monitored for mortality and external pathology, mortalities were tested by virus isolation assay, and live fish were regularly sampled and screened for infection. Among injected sockeye, VHSV was detected in 1 mortality (n = 195) and 2 sub-sampled fish (n = 30), whereas sockeye exposed by immersion and cohabitation did not experience mortality nor was systemic infection indicated by tissue screening. Injection and cohabitation exposure routes confirmed the susceptibility of Atlantic salmon to VHSV. Neither sockeye nor Atlantic salmon surviving the cohabitation served as a reservoir of VHSV, but Pacific herring did. The results suggest that VHSV-IVa poses low risk to sockeye salmon under natural routes of exposure.


Assuntos
Doenças dos Peixes , Septicemia Hemorrágica Viral , Novirhabdovirus , Animais , Aquicultura , Colúmbia Britânica , Genótipo
17.
J Fish Dis ; 42(6): 869-882, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30977528

RESUMO

While co-infections are common in both wild and cultured fish, knowledge of the interactive effects of multiple pathogens on host physiology, gene expression and immune response is limited. To evaluate the impact of co-infection on host survival, physiology and gene expression, sockeye salmon Oncorhynchus nerka smolts were infected with the salmon louse Lepeophtheirus salmonis (V-/SL+), infectious hematopoietic necrosis virus (IHNV; V+/SL-), both (V+/SL+), or neither (V-/SL-). Survival in the V+/SL+ group was significantly lower than the V-/SL- and V-/SL+ groups (p = 0.024). Co-infected salmon had elevated osmoregulatory indicators and lowered haematocrit values as compared to the uninfected control. Expression of 12 genes associated with the host immune response was analysed in anterior kidney and skin. The only evidence of L. salmonis-induced modulation of the host antiviral response was down-regulation of mhc I although the possibility of modulation cannot be ruled out for mx-1 and rsad2. Co-infection did not influence the expression of genes associated with the host response to L. salmonis. Therefore, we conclude that the reduced survival in co-infected sockeye salmon resulted from the osmoregulatory consequences of the sea lice infections which were amplified due to infection with IHNV.


Assuntos
Coinfecção/veterinária , Copépodes/patogenicidade , Interações Hospedeiro-Patógeno/genética , Vírus da Necrose Hematopoética Infecciosa/patogenicidade , Osmorregulação , Salmão/imunologia , Animais , Coinfecção/patologia , Feminino , Doenças dos Peixes/parasitologia , Doenças dos Peixes/virologia , Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Salmão/genética , Transcriptoma
18.
Front Physiol ; 10: 114, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30930782

RESUMO

The recent ubiquitous detection of PRV among salmonids has sparked international concern about the cardiorespiratory performance of infected wild and farmed salmon. Piscine orthoreovirus (PRV) has been shown to create substantial viremia in salmon by targeting erythrocytes for principle replication. In some instances, infections develop into heart and skeletal muscle inflammation (HSMI) or other pathological conditions affecting the respiratory system. Critical to assessing the seriousness of PRV infections are controlled infection studies that measure physiological impairment to critical life support systems. Respiratory performance is such a system and here multiple indices were measured to test the hypothesis that a low-virulence strain of PRV from Pacific Canada compromises the cardiorespiratory capabilities of Atlantic salmon. Contrary to this hypothesis, the oxygen affinity and carrying capacity of erythrocytes were unaffected by PRV despite the presence of severe viremia, minor heart pathology and transient cellular activation of antiviral response pathways. Similarly, PRV-infected fish had neither sustained nor appreciable differences in respiratory capabilities compared with control fish. The lack of functional harm to salmon infected with PRV in this instance highlights that, in an era of unprecedented virus discovery, detection of viral infection does not necessarily imply bodily harm and that viral load is not always a suitable predictor of disease within a host organism.

19.
Sci Rep ; 9(1): 3297, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30867461

RESUMO

Piscine orthoreovirus (PRV) is ubiquitous in farmed Atlantic salmon and sometimes associated with disease - most notably, Heart and Skeletal Muscle Inflammation (HSMI). However, PRV is also widespread in non-diseased fish, particularly in Pacific Canada, where few cases of severe heart inflammation have been documented. To better understand the mechanisms behind PRV-associated disease, this study investigated the infection dynamics of PRV from Pacific Canada and the potential for experimental passage of putatively associated heart inflammation in Pacific-adapted Mowi-McConnell Atlantic salmon. Regardless of the PRV source (fish with or without HSMI-like heart inflammation), infections led to high-load viremia that induced only minor focal heart inflammation without significant transcriptional induction of inflammatory cytokines. Repeated screening of PRV dsRNA/ssRNA along with histopathology and gene expression analysis of host blood and heart tissues identified three distinct phases of infection: (1) early systemic dissemination and replication without host recognition; (2) peak replication, erythrocyte inclusion body formation and load-dependent host recognition; (3) long-term, high-load viral persistence with limited replication or host recognition sometimes accompanied by minor heart inflammation. These findings contrast previous challenge trials with PRV from Norway that induced severe heart inflammation and indicate that strain and/or host specific factors are necessary to initiate PRV-associated disease.


Assuntos
Doenças dos Peixes/virologia , Orthoreovirus/patogenicidade , Infecções por Reoviridae/virologia , Salmo salar/virologia , Virulência/fisiologia , Animais , Aquicultura , Canadá , Eritrócitos/virologia , Coração/virologia , Inflamação/virologia , Músculo Esquelético/virologia , Noruega , Carga Viral/métodos
20.
J Aquat Anim Health ; 31(1): 75-87, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30566268

RESUMO

The salmon louse Lepeophtheirus salmonis, a type of sea lice (family Caligidae), is enzootic in marine waters of British Columbia and poses a health risk to both farmed Atlantic Salmon Salmo salar and wild Pacific salmon Oncorhynchus spp. At the adult stage, sea lice infections can often result in severe cutaneous lesions in their salmonid hosts. To evaluate and compare the physiological consequences of adult L. salmonis infections, smolts of Atlantic Salmon and Sockeye Salmon O. nerka were exposed to 2 (low), 6 (medium), or 10 (high) adult female lice/fish. Mean lice abundance decreased over time in all groups. Skin disruption due to parasite infection was observed in both species. Plasma samples were collected from infected fish and uninfected controls at 1, 3, 5, and 7 d postinfection and measured for indicators of osmoregulatory function and stress. Sockeye Salmon, regardless of L. salmonis exposure level, showed a rapid onset of elevated osmolality and sodium and chloride ion concentrations which were sustained until 7 d postinfection when values returned to levels comparable with the unexposed controls. Conversely, these effects were not measured in Atlantic Salmon. Additionally, differential host effects in blood glucose levels were observed, with Sockeye Salmon displaying immediate elevation in glucose. Relative to Atlantic Salmon, infection with L. salmonis caused a profound physiological impact to Sockeye Salmon characterized by loss of osmoregulatory integrity and a stress response. This work provides the first comprehensive report of the physiological consequences of infections with adult L. salmonis in Sockeye Salmon smolts and helps to further define the mechanisms of susceptibility in this species.


Assuntos
Copépodes/fisiologia , Ectoparasitoses/veterinária , Doenças dos Peixes/epidemiologia , Salmo salar , Salmão , Animais , Aquicultura , Colúmbia Britânica/epidemiologia , Ectoparasitoses/epidemiologia , Ectoparasitoses/parasitologia , Ectoparasitoses/fisiopatologia , Feminino , Doenças dos Peixes/parasitologia , Doenças dos Peixes/fisiopatologia , Prevalência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...